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I ABSTRACT

Three basic research directions were pursued. The first was the

I construction of computer aids which enable an analyst to interactively

structure and specify a discrete control model. The resulting model can

be used to automatically analyze a data base containing event oriented

operator performance data. The second task involved providing theoretical

and analytical support for the construction of a multi-level, discrete

control based model of planning related activity in a target acquisition

task. The third effort examined the use of discrete control concepts

in the design of computer integrated information display systems. This

effort demonstrated, in part, the usefulnes's of discrete control when

structuring a problem in such a way that operator oriented displays can be

designed.
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1. INTRODUCTION

Research performed under the sponsorship of this grant falls into three

main categories:

1) continued development of comaputer aids for discrete

control analysis

2) development off a three level, finite state representa-

tion of a target acquisition task with continuous

control variables

3) an exploratory examination of the use of discrete con-

trol modelling in the design of canputer integrated

displays.

These areas of research all directly contributed to the main theme of the

grant, namely, attempting to better understand how operators organize their

knowledge of complex systems and how they process information while performing

their assigned tasks.

Issues explicitly associated with teams were not directly pursued for

several reasons. Since the grant was for one year of research (a two year

program was originally proposed) no experimental or empirical work could be

directly accommodated. When the opportunity to take advantage of data from

two experiments not directly funded by the grant became available, it was

determined that progress toward the long range goal of understanding how

operators organize complexity would be best served by concentrating on the

available data rather than attenpting more speculative and exploratory research.

The research task on computer aids for discrete control analysis developed

interactive techniques which an analyst can use to define the network structure

and the constructive specification of each node in a discrete control network.

The resulting structure can then be used to autauatically analyze a data base

containing operator behavior data, or to simulate operator performance.



* Prior to this work a major programming effort was required each time a new

model structure was considered. This research is discussed in section 2.

The work with the target acquisition data was particularly interesting

* since the data were not inherently discrete. The experiment was conducted

* by Dr. Richard Jagacinski with funding provided by Grant No. AFOSR-78-3697.

The effort supported by this grant consisted of the theoretical and

analytical support necessary to develop and parameterize a discrete control

model. The results of this effort are discussed in Jagacinski, et. al.,

1981 and therefore are not reviewed here.

The third research task was quite different from all previous discrete

control related efforts. Here, rather thar analyzing data, discrete control

techniques were used to represent an operator's information processing

task in a hypothetical system and then design a display and information

system which accounts for the operator's information needs at a reasonable

level of abstraction. Funding from this grant was used to support the

system analysis and display design. The experiment was conducted with

funding provided from other sources. The problem and a summary of the

experiment and the results are presented in section 3.

2



2. INTERACTIVE COMPUTER AIDS

Discrete control is a type off manual control in which the operators

have a finite number of control or decision alternatives to control the

system behavior over time. Miller (1979) used finite state methods to

model discrete control task performance and showed that stochastic automata

could be used to parameterize the model. The behaviors of complex systems

can be explained and important decision points can be identified with the

discrete control methods developed.

The systems that are analyzed by finite state modelling can be very

complex and the number of parameters involved is generally large. To

analyze the systemt as a whole is quite dift~icult and sometimes impossible.

This is one of the reasons why the system is decomposed into small

subsystems at the beginning of the analysis. The analyst defines the

subsystems according to the specific rurpose of the study. The subsystems

are then linked tcgether to form a network. This network representation

of the system is a critical step in finite state modelling.

This research is an attempt to develop computerized analysis aids to

simplify the construction of the network mentioned above. An interactive

program which allows the analyst to define subsystems and the system network,

and then automatically compute system state transition behavior over time

is the objective.

* Every complex system can be represented by simpler subsystems that

*are connected to each other forming a network structure. Each subsystem is

defined by a set of inputs, a set of outputs, and a state representation.

The subsystems trahsfer information along the arcs of the network. The

inputs to a subsystem in general are the outputs of other subsystems, and

*the outputs of that subsystem are inputs to others. It is possible then

to represent the structure of a complex system simply as a directed graph

3



with nodes consisting of the subsystems and the arcs consisting of communica-

tion links. A network representation of the system is constructed in this

manner at the initial stages of discrete control modelling. Typically

computer routines are then written to analyze the behaviors off the subsystems

over time. These routines are specific to the network developed; that is,

different programs nust be written for different representations. if the

analyst wants to make changes in the network, he has to rewrite the

computer programs to correspond to the new representation. This is a time-

consuming process because it is likely that the best model of the system

will not be the first one, and as the model is modified the programs used

* must be changed. The need for a general computer program that can be used

to analyze a large class of networks, rather than one specific network,

motivated this study.

2.1 Discussion of the Method

-. Figure 2-1 shows the function off the required program. it must compute

* the states of all the subsystems in the network. The program output, sub-

system state information, must be in events form.

definitions of

subsystemsGERA

*communication linkssteso

between subsystems PROGRAM subsystems

primitives of analysis

Figure 2-1. Function of the General Program



As shown in Figure 2-1, one class of inputs to the general program is

a primitive inputs data base. This is also event based data. Another

input to the general program is the definition of the state computation

rules for each subsystem. The last input required is the definition of

* the communication links between the subsystems, i.e. the network structure.

Figure 2-2 shows a key function of the general program described

above. This function assigns the state of a subsystem using the inputs

to that system. Using this function repeatedly, all the subsystem states

can be computed. But the order of this camputation is important and

is controlled by the structural representation of the subsystem.

state

STRUCTURAL

inputs to RERSNAIN next state of

the system RERSNAIN the subsystem

OF SUBSYSTEMS

Figure 2-2. Function of the Structural
Representation of Subsystems

The state input is shown with a dotted arrow because it is not used in

cambinational subsystems; only sequential subsystems require that input.

Representation by Tables

The representation of subsystems can be structured in various ways.

Table 2-1 shows a simple table representation of a system with three inputs,

namely 12, 12, 13. It is similar to a truth table except that the values

of the inputs and the state of the system are not necessarily binary numbers.



*Ii 12 13 state

12 1 1

1 12 2

12 2 3

2 113

2 2 12

2 12 2

2 2 2 3

In titaliptvalues of the subsystem form the columns of the

table andhL difrow. Sonton the Tables er:::1:a:: shown in:the rows.

T"he last column is the state value which corresponds to the combination of

inputs ithtrw Sohefirst column in Table 2-1 can be interpreted

as "if 1.1 = 1 and 12 =1 and 13 = 1, the system will be in state 1". In

general tables will be very long since there is a row for every combination

of input values. In Table 2-1 there are three inputs each with two possible

values, so the number of combinations is 2 3 8. A system with three inputs

with four values each could require eighty-one rows! Clearly, tables would

be a very difficult mechanism.

The Use of Logical Operations

The representation of subsystems by tables is not adequate for our

purpose since the tables would be very long and not convenient for computer

applications. Before putting more structure on the representation of sub-

systems, certain logical operations will be defined. These logical opera-

tions will be used to summarize the information given in tables similar to



Table 2-1. Subsystems will be represented using this set of logical

operations as binary trees which are suitable for computer applications.

Three operations are used in this discussion: AND, OR, SET.

Additional operations can be added if required. The first two, AND and

OR, have two operands each. AND, OR operations with more than two operands

can be defined similarly if desired. The AND operation is represented

by a "A! sign. in the AND operation if the first operand has a specified

value and the second operand has a specified value the result of the

operation is "true". If either of the operands does not have the

* corresponding specified values, the result of the operation is "false".

The OR operation is represented by a "VY' sign. In an OR operation, if

the first operand has a specified value or the second operand has a

specified value, the result of the operation is "true". If both of the

operands do not have the corresponding spe-cified values, the result of

the operation is "false". The SET operation checks if a given element

is in a specified set. The element is compared with the elements of the

set one by one. If the given element is identical to any of the elements

of the set, the result of the SET operation is "true", if not the result

* is "false".

j Logical functions are written using the three logical operations

defined above. The value of a logical function is either one or zero.

One stands for "true" and zero stands for "false". Figure 2-3 shows

examples of logical functions that use the logical operations defined.

The first function uses an AND operation. The value of this function is

one if Il equals three and 12 equals one. Otherwise the value of this

function is zero. The second function uses an OR operation. The value

of the function is one if 13 equals two or Il equals two. If 13 does

not equal two and Ii does not equal 2, the value of the function is zero.



The third function in Figure 2-3 uses a SET operation. It checks if

12 is in the set (1,2,4,6). Iff 12 equals one or two or four or six,

i.e. is one of the elements of this set, the value of this function

will be one. If not, the value of the function will be zero. The SET

operation can be formed by repeated OR operations and is therefore not

strictly necessary. It is included to simplify the analyst's modelling

task.

12 E(.1,2,)4,6)

Figure 2-3. Examples of Logical Functions

In addition to the logical operators, output assignment operations as shown

* in Figure 2-4 are defined. They assign a "value" to the state of the

subsystem.

stae1 vavlue

Figure 2-4. Termination Node

The logical functions defined above and the tree graphs give the t
necessary structure to construct subsystem state computation rules. TreesU

can be constructed with logical functions and termination boxes as their

nodes (vertices) to represent subsystems. This is illustrated by theU

following exam~ple.

85



Example

Table 2-2 shows an abbreviated table representation of the subsystem

which will be used as an example. The structure of this table is a little

different than the one shown in Table 2.1. To shorten the length of the

table some rows can be combined. This is done again by using logical

symbols:

V "or"

A "and"

-j "not"

As - (1 A 2) means neither one nor two, 1V2V3V4 means either one or two

or three or four.

The subsystem in Table 2-2 has four inputs: Il, 12, 13, 14. The

inputs have three, four, two, and six values respectively. States of the

subsystem for different combinations of inputs are given in the last column.

There are four states for this system.

INPUT 1 INPUT 2 INPUT 3 INPUT 4 STATE OF

(i1) (12) (13) (14) SUBSYSTEM

3 1 1V2V3 lV2V3V4V5V6 1

3 -V2V3 IV2V3VUV5V6

3 lV2V3V4 lV2V3 -j(iV2) 1

-13 lV2V3v4 lV2V3 2 2

13 lV2V3v4 13 1 3

-13 lV2V3V4 3 1 4

Table 2-2. Table Representation of Example Subsystem

I-

:1 9



The task is to compute the information given in Table 2-2 using

logical operations. If the Table 2-2 is examined carefully, it can be

seen that when the values of Il and 12 are three and one, respectively,

the output is one no matter what the other inputs are. Similarly, if

the inputs Il, 12 are three and one respectively, then the output is

four no matter what the other inputs are. These facts define the

* required computational steps.

Figure 2-5 is a computational representation of Table 2-2. Each

decision box has two outgoing arrows labelled with a one or zero. One

of the two will be followed to the next node according to the result

of the logical operation. Terminating nodes have no outgoing arrows.

Figure 2-5 is a binary tree. Since there can be two results at

each node, either one or zero, tke graphs of this application are binary

trees. If operations requiring more than two possible outcomes are

defined, the binary character would not apply, but the tree structure

would be preserved.

The procedure of computing the subsystem state starts with the

* uppermost node which is "Ii = 3 A 12 = I". This can be translated

as "if 11 has a value three and 12 has a value I". If this condition

is satisfied, that is if 1l equals three and 12 equals one, the result

of the logical AND operation is one. This means that the arrow labelled

one is followed to the next box. If 11 and 12 are not three and one

respectively, the result of the AND operation is zero. This time the

branching arrow labelled zero is used to define the next function. Let

us assume that 11 equals three and 12 equals one. This will cause a

branching from the top node to the termination box at the left which

contains "State a1". As mentioned before, this means that the search

for the state of the subsystem is finished and the subsystem is in state 1.

10
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100
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Figure 2-5. Ecample of Graphical Representation of Subsystems
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If the. first row of Table 3-2 is checked, it is seen that when Il

equals to three and 12 equals to one, the output is one. Here the

values of the other inputs do not make any difference.

If the result of the first logical operation is zero in Figure

2-5 the next node is 11I1 (F (3)". Here if input 11 is three the result

is a one, if not, the result is a zero. It branches to the termina-

tion box which assigns "state = 4" if the result off the logical operation

is one, that is Il equals three.

As seen fran the above discussion drawing Figure 2-5 from Table 2-2

*is a straightforward process. And Table 2-2 is formed from the table

which given the states of the system f or every combination of inputs.

K~nowing the four inputs of this example subsystem, one can start

from the top of Figure 2-5 and find the state of the subsystem by

checking the conditions at the appropriate nodes. A computer program

can work the same way. Starting from the top node and branching

according to the results of the logical operations, the program will

end up at a termination node where the state of the subsystem is given.

The representation of subsystems by this method is suitable for input

to computer routines. One such input format is developed and laced in the

following section.

The representations of the sequential subsystems are the same as

the representations of the combinational subsystems. In sequential

subsystems the present state of the subsystem is treated as another input

to the subsystem. Even though rhere is no charge in the representation,

the computer program has to compute and record the states of the sequential

subsystems.

12h
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----------

6 All the subsystems in the network can be represented using this

method. Then, given the values of the exogenous inputs to the system

the states of all the subsystems are ifound. If the values of the inputs

are changing over time, the network is used repeatedly to compute the

states of the subsystem as a function of time.

As mentioned before th~e states of the subsystems in the network

must be computed in a special order. At any given time the states of

the subsystems that have the primitive variables as inputs maist be

canputed first. These are the first level subsystems. Then given the

states of the first level subsystems and the primitives, the states

of the second level subsystems are computed. The computation proceeds

in this order. To meet this condition the subsystems are sorted at

the beginning of the execution of the program. This subroutine sorts

the combinational subsystems into a tree structure and writes the

sequential subsystems at the end of the list. At a given time t, given

- I .the values of the primitives, the states of the combinational subsystems

are computed first. After the states of all combinational subsystems

are known at time t, the states of sequential subsystems at time t + 1 are

computed. If there are any combinational subsystems that have inputs

of sequential subsystems, their new states at time t + I are computed

next. The procedure of evaluating the states of the subsystems over time

continues with the repetition of these steps.

2.2 Outline of the Program

A general computer program was written to compute the subsystem

states of a network. It uses the techniques discussed in the previous

section to represent subsystems. The input-output organization and

logic of the routines are discussed in this section.

13
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Naming Subsystems

Subsystems are given two-digit integer "names". Numbers from 80

to 99 must be used for sequential subsystems. Any subsystem which is

designated by a number between 80 to 99 will be treated as a sequential

subsystem by the program. Here the primitives are treated as canbina-

tional subsystems. The primitive variables can be named by any number

between 00 to 79.

Input-Output Organization

There are three different types of inputs to the program: (1) the

* 4 network, (2) structural representation of the subsystems, and (3) infor-

mation about the exogenous inputs to the system.

The network used in a particular run is defined in an input file.

An example of this file which represents the network graph in Figure 2-7

is shown in Figure 2-6. The network is established by listing each user

defined subsystem and all subsystems which provide input to it. For

example, subsystem 62 receives inputs from subsystems 04, 03 and 12.

( Each user defined (i.e. non-primitive) subsystem is given in a

different record. There are 23 lines in Figure 2-6 which describe 23

!-1 subsystems. Each line is divided into 8 fields of two digits each. The

first two-digit number in field I is the subsystem number. The following

numbers in fields 2, 3, 4, 5, 6, and 7 are the numbers of the subsystems

input to that subsystem. The two digit number in field 8 is accepted as

the initial state of sequential subsystems. So the records representing

combinational subsystems have blanks in field 8, but records of sequential

subsystems must have their initial states in field 8.

The first line in Figure 2-6 shows that the inputs to subsystem 62

are the states of subsystem 4, subsystem 3 and subsystem 12. The third

14
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62,04,03 ,12
64,22,23,24,25
65,63 ,64,57 ,61
61,56,55,58
60,11
63,04,07 ,08
55,13,14
66,59,60,30
56,04,05,06
57,01,02,03
58,03,04,09
59,08,58,10
67,27,28,31
81,29,82, ,01

68,21,26

82,82,81, , , , ,01

83,62,84, , , , ,01

84,85, , , , , ,01
85,83,85, , ,, , ,o1
51,18,17
52,16
53,15
54,19,20

Figure 2-6. Subsystems in the Network and

the Network Representation

* I
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line shows that inputs to subsystem 65 are states of subsystems

63, 64, 57, 61. The sixteenth line indicates that sequential subsystem

82 has an initial state of 01 and the inputs to this subsystem are

subsystems 82 and 81.

Order is not important in this input file. A subroutine will

sort this list into the proper precedence structure at the beginning

of the execution of the program.

Structural representations of the subsystems are fed to the

caputer from a file with a format given by the example in Figure 2-8.

This figure shows the structural representation of the subsystem in

Figure 2-9 as an input to the programs. The inputs to the subsystem

in Figure 2-9 are states of subsystems 63, 64, 57 and 61 which are

represented by S63, s6h, S57, and S61, respectively.

0 01 ,A,02,06,63,64,3,1

02,S,03,o9,63, ,3

03,A,04,09,57,61,1,3

0o4,S,05,08,57, ,l

05,s,06,07 ,57, ,2

06,T,01

07,7,02

o8,T,03

09 ,T ,o4

Figure 2-8. Example of Input File (2): Structural Representation
Of the Example Subsystem

Each line in the input format corresponds to a node of the graph.

The nine lines in Figure 2-8 represents nine nodes in Figure 2-9 , (multiple

copies of the state assignment nodes are counted only once).

717
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6 Records corresponding to termination nodes are given after all

non-termination nodes are defined. The last 4 lines in Figure 2-8 define

the 4 possible states of this subsystem.

Each line is divided into fields by commas. The first field has

the node name (or box number from the graph representation of that sub-

system) which is two digits. The second field has the symbol for the

logical operation used in that node. Each operation is represented

by one letter: "A" stands for "AND", "0" stands for "POR", FPS" stands

for "SET" and "T" stands for termination node.

* 4 If the record has a "T" in field 2, the third field represents the

state to be assigned to the subsystem. The two-digit number in this field

is the state of the subsystem if the computation ends with this record.

If the record is representing a termination node, the fields following

field 3 are not used.

If the record has one of the following letters "A", "0", 'IS", in

field 2, it represents one of the logical operations AND, OR or SET.

The third field gives the next node to be checked if the result of the

a logical operation is 0. The two-digit number in field 3 is the r~iber

of this node. The fourth field gives the next node to go to if the result

* of the logical operation is 1. Field 5 gives the first operand name as

a two-digit number. Field 6 gives the second operand name as a two-digit

number. In Figure 2-7, line one has "63" in field 5 and "64"1 in field 6.

This means that operand 1 is the state of subsystem 63, operand 2 is the

state of subsystem 64. Field 7 gives the value which operand 1 is to be

compared to, field 8 gives the value the second operand is to be compared

to.

There is a subroutine (SYOUT) which assigns the state of a subsystem

given its representation in the proper format. The routine starts reading
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the fi.rst line and searches down the input until a termination node is

reached. Whenever a termination node is reached the search stops and

the state of the subsystem is assigned.

All subsystems in the network, except the subsystems that are assumed

* to be primitives, are represented in this format in a separate input

ifile.

Primitive Inputs To Data Analysis

The primitive variables of data analysis are contained in this input

ifile. This file, which contains the time histories of these variables,

must be in event format. Figure 2-10 shows an example of this ifile. The

first two-digit number stands for the primitive variable number. The next

five-digit number is the time at which the value -was assigned, and the last

one-digit number is the value assigned to that specific primitive variable

at that time. The first two lines are header records. They are trans-

ferred literally at the beginning of the output file.

In this example the next thirty lines after the header record, define

the initial conditions of the primitives, i.e. time 1 values. Since the

* I file is event oriented only changing inputs, their new values and the time

of the change are seen afterwards. For example there are five lines with

time 2. This shows that only inputs 13, 14, 15, 19, 20 changed at time 2.

After time 2 there is not an event until time 126, when input 23 changes

its value to 1. The next event is at time 134. This file must have the I
complete record of thie input values in this form.

Output of the Program

The output of the program has the same format as the primitive input

data explained in the previous section. Subsystems and their states are

given in the output in event form.
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1 & 22327 6
1. 3 5101
1. 1 2
2 1 1
3 1 2
14 1 1

5 1 2
6 1 2

7 1
8 1 2
9 1
10 2

13 1 1

114 1 1

$21 
1 1

22 1 1

*23 1 2
214 1 2
25 12
30 11
26 11
27 11
29 1 1
28 11
16 1 2
17 1 1
18 1 1
2.5 1 2
19 1 1

20 1 2
2.3 2 2
114 2 2

.115 
2 1

19 2 2

20 2 1
23 126 1
22 134 2
29 134 2
22 137 1
29 137 1
1.2 1.50 2
22 159 2

29 159 2
22 170 1

Figure 2-10. Primitive Variables
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Figure 2-12 shows a part of an output file of the program. The

first two lines are the heade, records copied from the input file. Then

the initial states assigned to the subsystems are given.

The first 2 digits are the subsystem numbers. The time comes

next. And the single digit at the end of each line is the state assigned

to that subsystem at that time.

The third line in Figure 2-11 shows that subsystem 62 was in state 2

at time 1. The initial states assigned to other subsystems follow until

the initial states of all the subsystems are assigned. Initial conditions

are those assigned at time 1. After these there are four lines with time

value 2. These lines show that the state's of subsystems 83, 84, 53, and 54

changed at time 2.

After the initial states of the subsystems are assigned, the program

reads the event base data about the primitive inputs. At each line it

checks if that change of input affects any of the subsystems. If it does,

it makes a list of those subsystems and assigns their new states. And

it writes them on this file with the corresponding time.

Computer Programs

The computer program uses seven subroutines. The structure is given

in Figure 2-12.

STATE is the main program. A rough flow chart of STATE is given in

Figure 2-13. From the terminal it gets the names of the two input files:

Input(l)-Subsystems in the network and the network structure, Input(2)-Prim-

itive inputs. It also gets the name to be given to the output file which

will store the states of the subsystems.

STATE then assigns the initial states of the subsystems and it reads

the event base data of the primitive inputs and checks the combinational

22

pI



1 22327 6
1 3 5101

62 1. 2
64 1 1
55 1 1
63 1 4
6o 1 1
56 .1 4
58 1. 1
59 1 2
57 1 5
61 1 2
65 1 1
66 1 1
67 1 2
68 2.1
51 1 1
52 1 2
53 1 2
54 1 2
81 1. 1
82 1 1
83 1 1
84 1 1
85 1 1
83 2 3
55 2 4
53 2 1
54 2 3
85 3 2
85 4 3
84 14 3
84 5 2
83 5 1
64 134 2
81 135 2
67 135 1II64 137 1
81 138 1
6T 138 2
62 150 4
83 151 2
85 152 1

84 153 1

Figure 2-11 Subsystem States
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Figure 2-12. Structure of Routines
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* START

Read the list of
subsystems and
their inputs

J IRead initial values

of primitive inputs

of subsystems YOUTO

Rednext event

Endoffie? Yes- STOP

no

Check combinational
subsystems effected C
from events & write

their new state

.II

*I Check sequential
Isubsystems effected
from events & write SCHECKT

their new stateIIIL
Store the changes in

subsystem states as
new events

Figure 2-13. Flowchart of STATE

25Ii

UU'1 S U IIi 3 .. ,-'' ' 1 q u



subsystems affected. Kere it reads all the events which occurred at a

given time before checking the subsystems affected. If there are any

combinational subsystems affected by the events the new states are

assigned and written by the subroutines CCRtECK and SYWUT.

The sequential subsystems affected by the events are also found

by $CHECK. Their new states are assigned by SYQUT. If' the sequential

subsystems oscillate, STATE finds their new states by using SCHECK and

SYOtJT over and over, increasing time by 1 each time. Meanwhile it also

compares the time of the next event with the incremented time. If they

are the same the next event plus the oscillating subsystems are considered

to be the event set and the new state assignment continues. If the

oscillating subsystems reach a steady state, the next change in the

primitive inputs is read and the computation of states of subsystems

continues.

At the beginning of the program, after the initial states of the

combinational subsystems are computed, the sequential subsystems are

checked for the initial condition affects.

Subroutine SORT is used to sort the subsystems at the first stage

of the execution of the program. It was previously discussed that the

combinational subsystems must form a tree. The states of all the subsystems

which are input to that subsystem must be known before assigning its

state.

This subroutine reads the subsystems and their inputs from input

file (1). It sorts them such that every subsystem state is computable from

the subsystems above it. It records the sequential subsystems at the end

of the li~t.



This subroutine reads input file (1) which has the subsystem names

and their inputs line by line. It checks the sequential subsystems and

stores them in an array which will be added to the end of its output file.

When it reads a combinational subsystem, it is checked if that subsystem

* is affected by any of the combinational subsystems below it. If there is

a combinational subsystem below that is an input to it, the locations off

the two subsystems are changed. Continuing this procedure all the combina-

tional subsystems are sorted. The sequential subsystems are added to the

list after the combinational subsystems. This list is recorded in a file

*called "ALLSYS.DAT" It has the same format as input file (1). ALLSYS.DAT

is used by the main program instead of the input file (1).

The subroutine SYGUT reads the subsystem representations and assigns

the states. it uses the subroutines OR, AND, SET. This subroutine is called

with a specific subsystem. It then reads the input file off that specific

subsystem line by line until its state is assigned.

Subroutine CCHECK finds the combinational subsystems affected by a

set of events. It then writes their new states using SYOUT.

An event may change the state of a subsystem which talks to another

subsystem. So the states of several subsystems may change in a chain.

It keeps track of the changing subsystems and finds the others affected

by them. Then it assigns the new states of all combinational subsystems

that are affected by the event using subroutine SYOUT.

Subroutine SCHECK checks the sequential subsystems and finds the ones

which are affected by the set of events. Events can be changes in the

inputs to the net-work or changes in states of subsystems. Subroutine

SYQUT is used to assign the new states of the changing sequential subsystems.

27
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The sequential subsystems that change their states are returned

to the main program as new events. Before writing the new states of

the subsystems they are compared with their previous states. If they

are the same, the state is not written again. This is required because

there can be a change in one of the inputs to that subsystem which does

not change its state. In other words two different values of an input

to that subsystem may produce the same state.

Subroutines AND, OR, and SET perform the logical operations defined

previously. Fortran code for this program and all subroutines can be

obtained from the author. Further details are also available in Sevenler

(1980).
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3. DISCRETE CONTROL AND THE DESIGN OF INTEGRATED DISPLAYS

This section is a brief review of the Ph.D. dissertation of

Christine Mitchell which utilized discrete control concepts in the design

of a ccmputer integrated display. Details not presented here are avail-

able in Mitchell (1980) and Mitchell and Miller (1980).

3.1 Background and Rationale

In selecting and constructing a system which could be used both to

illustrate the utility of the discrete control modelling methods in

display design and to experimentally test the resulting displays, several

considerations were taken into account. The system had to be a reasonable,

although somewhat idealized, representation of a control task faced by

a real controller in an information intensive control situation. The

control system had to allow multiple control activities and had to require

multiple pieces of displayed information in order to make most control

decisions, and yet be simple enough to allow subjects participating in

the experiment to function as trained controllers within a reasonable

length of time. Finally, control performance had to be quantifiable so

that meaningful comparisons of operator performance under varying display

conditions could be made.

* A discrete control routing task fit these requirements. Although a

continuous control task (e.g., tracking) could potentially be modelled using

the discrete control methods by discretizing the control outputs, the develop-

ment of a discrete control model is much simpler for naturally discrete

systens. Furthermore, a discrete control system is conceptually simpler

and requires less motor skill training for participants than most continuous

tasks.

1.
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In addition to modelling and experimental expediency, an idealized,

discrete control task has a number of substantive advantages. Modern

systems are increasingly automated with the result that the human operator

has been elevated from the position of manual controller to that of

a supervisor and monitor. The haman supervisor of a complex system

performs upper level, goal oriented functions such as planning system

activities, ,;rogramming the computer, monitoring the system behavior,

adjusting on-line parameters, and intervening to take over direct control

in abnormal or emergency situations (glossary in Sheridan and Johanssen,

1976). Roscoe and Eisile (1976), for example, described the pilot of

the new generation of high-speed, ,aultimission aircraft as an "information

manager or a fast decisi.on maker as opposed to a direct controller of

flight variables". The aperiodic, event based nature of the supervisory

function makes it a likely candidate for a discrete, event based model.

The routing system used in this investigation requires control activities

which are representative of the monitoring, system tuning, and intervening

behaviors of a system supervisor.

Singleton (1976) in distinguishing models of the supervisor from the

traditional models of the controller suggests that the former are more

complex, requiring explicit modelling of at least two additional dimensions

not required in the simpler models of the manual controller. Models of the

supervisor require a dimension which captures patterns of events in time

and space which precede control activitiies as well as the inclusion of a

dimensions which models the purpose of a control activity, described

perhaps at multiple levels. Singleton characterizes the traditional

models as stimulus-response models and describes the enhanced models as

gestalt or cognitive, capturing environmental conditions and operator purpose.
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* A distinct advantage in the use of the discrete control modelling methods

to guide display design is that the methodology deliberately attempts to

model the high level operator functions or purposes which govern individual

control activities; in addition, the next state transition functions pro-

vide a mechanism for modelling event sequences which cause or influence

system changes and operator actions.

Thus, although the specific system used in this investigation is a

manual or discrete control task, the discrete nature of the control actions

and the slow dynamics of the system allow a generalization of the results

to more supervisory control situations.

3.2 System Dynamics, Controls, and Constraints

The systen chosen for this research is a conveyor network which is

used to route engines through various checkpoints. In general, engines

are routed from the entrance, to the testing area, to the repair area, if

necessary, and, when successfully tested, out of the system. Figure 3.1

is a schematic of the system.

The system components consist of seven stations, three conveyor tracks,

and two storage areas. The stations are locations equipped with sensors

* where information about arriving or waiting engines is conveyed to the opera-

tor. Space limits the number of engines which can be held at a station to

at most one. The conveyors are unidirectional tracks which are pressure

sensitive. A track moves only when an engine is loaded onto it; the

conveyor carries the engine to the next station, stopping when the engine

arrives at the station. Once an engine is moving on a conveyor there

is no information available about the engine until it arrives at the next

station. Engines can only be loaded onto nonmoving tracks; tis, the

maximum number of engines allowed on a track is one.
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The storage areas are FIFO queues in which engines can be held

indefinitely. The Buffer Storage area has no capacity limitations;

Temporary Storage has room for no more than six engines.

The system is controlled by means of a set of nine switches.

The switches labelled 2 through 7, A and B, control a mechanism which

acts like a gate with springs. The gate has a natural or resting state,

denoted by the hash marks in Figure 3.1.; the gate remains in the resting

state until the operator pushes a control switch. WNhen the corresponding

switch is depressed the gate momentarily opens, long enough to allow a

waiting engine to roll past; after a few seconds the gate automatically

closes, reverting to the resting state. switch A controls the gate

which, in the resting state, blocks the exit of the Buffer Storage area;

when switch A is depressed the gate opens allowing the first engine in

the Buffer Storage queue to roll out onto the Production Buffer Transporta-

tion Track. Switch 2 controls the gate at Station 2; when the switch

is depressed the waiting engine rolls out onto the Test-Repair conveyor.

* Switches 6, 7, and B operate in a similar manner. The closed gate prevents

the waiting engine from moving; when the switch is depressed the gate

swings open allowing the waiting engine to roll out onto the conveyor.

After a few seconds, the gate automatically reverts to the resting state.

Switches 3, 4, and 5 have a slightly different function in that there

are two paths out of the associated stations. As a general rule, an

engine arriving at a station will pause for a few seconds; if no operator

action occurs at Stations 3, 4, or 5 within a short period of time the

waiting engine will continue moving on the default path. At Station 3 a

waiting engine will default down to the Feed Track moving toward Station 14.

T Unless prevented by operator action, an engine arriving at Station 4 will
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pause for a few seconds and proceed down to Station 5. in a similar

manner, an engine arriving at Station 5 will pause for a few seconds and,

unless the operator prevents it, will continue down to Temporary Storage.

If switch 3 is depressed with a successfully tested engine waiting at

Station 3, the engine is routed out of the system. If switch 4 is

depressed, the engine waiting at Station 4 is routed into Station 6.

If switch 5 is depressed, the engine waiting at Station 5 is routed

into Station 7.

Switch 1 controls a different sort of mechanism; the gate at

Station 1 has no automatic response. The state of the gate must be

manually set; it remains in a given state until it is manually reset.

When an engine arrives at Station 1 it will pause for a few seconds.

If there is not operator action at switch 1, the engine will proceed

to Buffer Storage if the gate is currently closed to Station 2; or,

if the gate is opened to Station 2, the engine will default onto the

Production Buffer Transportation Track, moving toward Station 2. If the

operator changes the state of the gate while an engine is waiting at

Station 1 the engine will imnediately proceed in the direction defined by

the new gate state.

Some stations can be used as holding areas for single engines. An

engine arriving at Station 2 will remain there indefinitely, leaving only

when switch 2 is pressed. Likewise, engines with repairs or testing

completed will wait indefinitely in Stations 6 and 7 until the respective

switch is depressed. Engines can also be held at Stations 4 and 5, though

this procedure requires some additional operator action.

The remaining system controls available to the operator are the hold

mechanisms which will hold engines indefinitely at Stations 4 and 5. The
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hold switches are both two state devices. To hold an engine the switch

must be depressed once; to disengage the hold mechanism, the switch must

be depressed again. As there is no mechanism for holding engines at

Stations 1 and 3, engines may never be held at either station.

Completed engines can be rerouted back into the system and can be

sent into the Test or Repair Stations. More generally, engines not

* requiring test can be routed into the Test Station and engines not

*requiring repair can be routed into the Repair Station. However, there

*is a time penalty for such actions in that these engines are held in the

stations for a period of time before they can be routed out. Those

*periods in which an engine is trapped in the Test or Repair Station are

referred to as local station locks. The engine can not be routed out

until the station is unlocked; a state change which is system as opposed

to operator controlled.

The Test-Repair Division Routing System processes two types of engines.

At any given time the operator is asked to give processing priority to

one engine type or the other. Although throughput is always a goal the

* operator is asked to give priority to the specified engine type whenever

possible. Operator performance is evaluated by an algoritht which takes

into account throughput, number of expedited engines processed as well as

* the number and type of errors.

These system components, dynamics, and constraints constitute the

Test-Repair Routing System. The discrete control model described in Mitchell

(1980) formalizes these entities and relationships in a form particularly

suited to assisting in the design of information displays for system

control.
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3.3 The Experimental Conditions

This experiment consisted of three experimental conditions.

integrated information displays, the Grouped Primitive and Hierarchic/Preview

displays, constituted two of the conditions. The third was a display

configuration which simulated a dedicated information display scheme.

The dedicated information display was designed so that the status of each

of the system components was given on the operator's console. The informa-

tion was presented in parallel and the operator had no control over

what information was displayed. The control panel for this display condition

* 4 consisted only of system controls. A change in system state caused the

corresponding displayed information to be' updated. There was no additional

mechanism (e.g., reverse video, blinking), however, to alert the operator

to a state change. The operator was required to carefully monitor the

displayed information in order to detect changes.

The dedicated display did not provide any diagnostic information to

assist the operator in correcting a locked condition. When a system lock

occurred, the operator was alerted to the fact by a flashing message;

however, no additional information concerning location or corrective pro-

cedures was forthcoming. In addition, the dedicated display provided

no preview information alerting the operator to upcoming events.

Error messages for all three display configurations were the same.

'When the operator made an error, an alarm sounded and a description of the

error was displayed on the console. The operator was told either that

the system bad overriden the control action, thas the operator was able to

proceed to another activity, or that the system was locked and further

operator action was required to unlock the system.
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The attributes which characterize the three displays used in this

experiment are summarized in Table 3.1. The primary difference is in

the control off information. The contents of the two integrated display

configurations were primarily operator controlled; whereas, the dedicated

display permitted no operator control of the screen contents. The

dedicated display was parallel in form; the integrated displays were

serial over control functions and parallel within control functions. The

dedicated display had a dynamic update capability. The integrated

displays provide static snapshots of the system; to update the display

contents, an information query button had to be depressed again. The

Hierarchic/Preview display was the only display provided the operator

with preview information which alerted him or her to forthcoming events.

Both of the integrated displays contained diagnostic information to

assist the controller in correcting system locks. These displays also

provided system alerts, notifying the controller of the occurrence of

events likely to require operator action. The dedicated display condition

provided neither diagnostic information nor system alerts. Finally, both

the dedicated and Grouped Primitive displays were composed of low level

pieces of data directly linked to hardware components. The Hierarchic/Preview

display, on the other hand, Drovided information which was aggregated and

reformulated depending on system state.

3.4 The Control Station and Information Display Console

The control station for the Test-Repair Division Routing Systen is

composed of a control panel and a display console. The control panel

consisted of a schematic of the routing system with the system controls

located adjacent to the corresponding gates or stations. Two panels were

used in this experiment. The panel for the dedicated display condition
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TABLE 3.1

Comparison of Display Attributes

Dedicated Grouped Primitive Hierarchic/Preview
Display Integrated Display Integrated Display

System Operator Operator
,Controlled Controlled Controlled

Parallel Serial Serial

Dynamic Static Static
Update Snapshot Snapshot

No Preview No Preview Preview
Information Informat ion Information

No Diagnostic Diagnostic Diagnostic
Information Information Information

*No System System Alerts System Alerts
.4 Alerts

- ,Low Level Low Level Reformulated
Data Data High Level Data
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* contained only the control buttons. For the integrated display conditions,

display controls were added to the system controls on the second panel;

the information query buttons for control functions were placed near the

system controls to which the functions correspond. The same panel was

used for both integrated display configurations. As the only physical

difference between the two was the inclusion of the "Shift" button for the

Hierarchic/Preview display, the panel was constructed so that this button

could be easily removed and the hole covered.

The information display console was a 19" video monitor located at

*eye level for a seated subject. The information displayed on the console,

for all three display conditions, was canputer-generated text material.

The video monitor was linked to the computer via a remote Jack on a Regent

100 CRT terminal. The Regent terminal served as the experimenter's

terminal and was not used by the subject while controlling the system.

-~ Information displayed on the console for the dedicated condition was

automatically updated at the occurrence of any event. Operator controlled

information for the two integrated displays, however, consisted of snap-

* I shots of the system. When information for a particular control function

was requested the current status of the relevant systems was displayed on

the screen; the displayed states, however, were not automatically updated.

An information update could only be acquired by once again requesting

information. As information was dated as soon as it was displayed, the

operator was encouraged to frequently sample the console. Requested

information was rapidly displayed, typically requiring less than three

seconds to completely display all the required information. Information

was changed or updated by depressing information query buttons. Displayed

information was deleted whenever a control action was performed. A control

39



q

action replaced the previously displayed information with an interim

message, indicating that more information was available upon request.

For the integrated information displays, error messages were

displayed on the top several lines of the display. The brief, system

controlled messages alerting the operator to events potentially

requiring operator response were displayed on the right side, a bit

above center. The continuously displayed expedited status was

directly opposite, on the left side of the screen. The remainder of

the screen was devoted to the display of operator controlled information.

The screen format for the dedicated display condition also bad the

error messages displayed at the top of tle console; the remaining

portion of the screen was filled with the status of the individual

system components.

Error messages remained on the screen for a fixed, ten second

period or until the next operator action. With the exception of test

and repair completions, system controlled messages, displayed in

reverse video in order to be more noticeable, also remained for a ten

* second period or until the operator initiated an action which responded

to the message. Messages notifying the operator of test or repair

completions remained on the screen until the waiting engines were released.

3.5 Data, Performance Measures, and Incentives

Experimental data were collected by the PDP 11/34 minicomputer which r
generated the simulation and information displays. The data consisted

of a log recording the time and event code of both system and operator

initiated events. Changes in the system components caused by exogenous

inputs, system dynamics, and operator actions as well as information query I.
requests and operator errors constituted this discrete event data base. [
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At the conclusion of each experimental session, an analysis program

was run to provide summary information on the subject's performance.

The performance measures consisted of an error count, a throughput

count, and an operator score which aggregated and weighted errors,

completed engines, and expedited engines. The operator score was a

measure which was reported to the subjects; it was a measure that

the subject's were directed to optimize. Operator errors were divided

into two types. The first type, costing the subject one point each

in the computation of the session score, consisted of more serious

errors. Such errors included operator actions which locked the system,

failed to unlock a locked system, or dirpctly violated a system

constraint causing a safety system override. The second type of error

was more minor, costing the subject only a half point each. These

error typically occurred when an operator needlessly activated the

controls (e.g., depressing Switch 2 with Station 2 clear). Subjects

were penalized for such actions in order to encourage careful,

thoughtful control actions supported by necessary information gathering,

* I and to discourage random button slapping. Information was free and

the system was comparatively slow, allowing adequate time for information

gathering. Completed engines which were routed out of the system at

Station 3 earned the subject two points each; if, in addition,.the

departing engine was of the type currently expedited, the operator

received a third point.

As the purpose of the experiment was to ascertain the effect of

the displays on operator performance, trained performance, not reflecting

learning effects, was desired. In order to eliminate, or at least

mitigate the effects of learning, only the data of the last several
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sessions was used for analysis. Participants were told that the first

sessions were training sessions and that those sessions which constituted

the usable data would only be specified at the conclusion of the experiment.

3.6 Results

The naming convention used in the plots and throughout this discussion

represent the dedicated display as display condition one, the Grouped

Primitive display as display condition two, and the Hierarchic/Preview

display as display condition three. For each type of plot, six dependent

measures were calculated: session score (SCORE), number of errors per

session (ERRORS), number of engines processed (ENGINES), number of

expedited engines processed (EXPED), the percentage of time that Station 6

was engaged in testing engines (BUSY), and the percentage of time that

Station 6 held an engine (HELD). In order to distinguish between display

conditions, data for display condition one was plotted against day + .2

and data for display condition three was plotted against day + .14.

The mean value of scores plotted over days suggest some extremely

nonrandom behavior (Figure 3.2). For a given day, the random number streams

defining system inputs and exogenous events on that day account for a great

deal of the day to day variation in session score. On day seven, for

example, a very high percentage of tested engines failed resulting in

comparatively lower session scores for all subjects under all display

conditions. The graphs clearly show, however, the differential effects

of the displays over the five days. For all days, the mean score of

subjects who controlled the system under display condition one was[

superior to that of subjects who controlled the system under display

condition three, which in turn was superior to the mean score for subjects
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controlling the system under display condition two. On average, the

difference between displays three and two seems to be twice as large as

that between displays one and three.

This pattern is repeated in the graph of mean number of engines

* processed per day (Figure 3.3). The mean for display condition three

closely tracks that of display one. The mean number of engines processed

with display two consistently lags behind; -with the difference between

conditions three and two twice the size of the difference between three

and one.

The graph of' the mean number of expedited engines processed shows

* a slightly different pattern (Figure 3.4,). The relation between display

conditions one and two is consistent with the previously observed pattern.

There is, however, more variability in the performance under display

condition three. For day six, the mean number of engines expedited is

lowest for display condition three. For days seven and nine the mean

number of engines is slightly higher for display three than for the other

two display conditions; the remaining days follow the previously noted

pattern in which performance under condition one is superior to that under

condition three which was superior to that using display condition two.

The graph for mean error demonstrates relationships between displays

which are similar to those fc.L expedited engines (Figure 3.5). Performance

under display condition one is uniformly superior to that under display

condition two. The error pattern for display condition three shows more

variability. Display condition three had the fewest mean errors for days

six and ten, and the greatest number of errors for days seven and nine.

It should be noted, however, that the overall differences in numbers of

errors made for the different displays is minimal; the mean number of errors

is under two per day, regardless of display condition.
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The last two measures used to investigate potential differences in

operator performance attributable to displays are resource utilization

measures for Station 6, the Test Station. Some indicator of operator

efficiency was desired. Error rate is essentially a sufficiency measure,

used to put a lower bound on the operator's understanding and skill.

The error rate measure has the advantage of being free from the effect of

the randomly generated, exogenous events driving the simulation on the

respective days. A measure of operator efficiency, free of the effects of

day to day variability, -was sought. It was hoped that the Station 6

utilization measures, percentage of time that the station was engaged

in testing (BUSY) and the percentage of time that the station held an

engine (HELD), would be such measures. The data indicates that BUSY

reflects a good deal of the system induced variation; HELD, however,

appears fairly stable across days. The HELD measure is an indicator of

strategy and the positive correlation between HELD and score suggests

that a strategy which keeps Station 6 full is a successful strategy.

With this type of strategy, the operator puts a very high priority on

keeping an engine waiting at Station 4 for entry into Test; generally,

an engine is only released from Station 4 when a second engine is

awaiting entrance at Station 4. This policy dictates operator actions

for releasing engines from Station 6, routing engines from Station 2,

Station 7, and Temporary Storage. Keeping Station 6 full was neither

encouraged or discouraged in training subjects; the subject's ability to

note the importance of this was an indicator of her or his strategic

aptitude.

Examination of Figure 3.6 shows that the mean value of BUSY exhibits

the same ordering across display conditions observed in score and engines

processed. Except for day six, mean BUSY was greatest for subjects using
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display one, and lowest for display two; performance with display three

was in the middle, closely tracking condition one. On day six, mean

performance with display three was marginally higher than that for the other

two.

The HELD measure shows and upward drift for mean values (Figure 3.7).

This is particularly true for display condition two. As this measure is

an indicator of strategy, the drift may imply a lack of a fixed strategy.

Once again, display conditions one and two follow the same pattern of

variation; 1performance under display condition one is consistently superior

to that under display condition two, measured by both mean and median

values of HELD. Performance under display condition three is also superior

to display condition two. The relation between performance under display

conditions three and one shows no consistent pattern, the close values and

lack of a consistent ordering between them may suggest that the difference

is merely random variation.

Taken together, the data suggest several things. First, the randomly

generated variation in the system has more effect on day to day performance,

for the majority of measures, than the different displays. Second, perform-

ance with the three displays seems to differ. Display conditions one and

two differ greatly and consistently on all of the performance measures

used in this study. Performance differences appear to exist between displays

three and two, though not as consistently or strongly as between one and

two. Overall, display condition one seemis to result in performance that is, i
on average, slightly superior to that using display three; whereas,

both of these displays results in performance which, for the most part, is

superior to that of display two.
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3.7 Discussion of the Results

The basic conclusion is that subjects who controlled the system

using the dedicated information display or the Hierarchic/Preview

information display, on average, performed significantly better than

those who controlled the system using the Grouped Primitive display.

Furthermore, there was no statistically significant difference in per-

formance between subjects using the dedicated and Hierarchic/Preview

displays.

A number of points are suggested by these results. The dedicated

display simulated a traditional control room. Fairly low level information,

i.e., data, was presented in parallel, forcing the operator to build a

mental model of the system which guided the selection and integration of

the various pieces of displayed data required for control decisions.

Integrated displays involve two models of the system: a computer model

which controls the displayed information and the operator's internal model.

In order to obtain needed information and to effectively control the

system, the operator's model and the model underpinning the-display must

be compatible. Mismatched models require the operator to engage in informa-

*1 tion searches which are time consuming and mentally fatiguing, and likely

to lead to a degradation in performance.

A possible conclusion which could be drawn from the results of this

experiment is that the model of the system used to design the Grouped

Primitive information display was a poor model, not compatible with the

user's model; for example, the specific control functions may not have

constituted a natural decomposition of the control activities of the system.

The performance of subjects using the Hierarchic/Preview display, however,

makes this conclusion suspect. Both of the integrated information
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displays were based on the same basic model of the system, and this

experiment revealed no performance differences between users of the

dedicated display and users of the Hierarchic/Preview display. The

basic difference between the two integrated displays was in the form

of the displayed information. This difference suggests another explana-

tion for the poor performance of users of the Grouped Primitive display.

Integrated information displays require the operator to call up

or locate pieces of information. Thus, the operator must learn to use

-' a set of information controls in addition to the set of system controls.

* The control of information, like the control of the system, requires

time and mental effort. In order to be a positive contribution to a

modern control room, integrated information displays must result in

operator performance which is at least as efficient as that using a

traditional dedicated display console. In order to compensate for the

time and effort required to obtain information, an integrated display

4 must decrease the information processing load associated with a dedicated

display.

The Grouped Primitive and Hierarchic/Preview displays tried to offset

the effort required to obtain information by linking the sets of displayed

information to the needs of standard control decisions. Thus, the computer

was to offset the information selection effort required by the integrated

display by partially performing the operator's traditional function of

display scanning and data selection. The fact that performance with the

Grouped Primitive display was significantly and uniformly inferior to per-

formance with the dedicated display suggests that the intended offset

did not occur. The mental models developed by the users of the dedicated

display allowed them to more effectively scan, select, and interpret the
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primitive information than the users of the Grouped Primitive display

could identify the appropriate control function and interpret the

displayed information. The superior performance of users of the

Hierarchic/Preview display suggests that additional computer assistance

is required to compensate for the extra work required of an integrated

display. The context insensitive dump of all the potentially useful

primitive data characteristic of the Grouped Primitive display is not

sufficient. The results suggest that in order to offset the mental load

created by requiring the operator to call up information, the displayed

information must not only be preselected, but it must also be integrated

and presented in a form more compatible with the operator's high level

information needs. Computer assisted scanning, selection, and integration

seem to be required to offset the effort required to request information

and the reorientation necessitated by the variable console contents.

The lack of a difference in performance between the users of the

dedicated display and the users of the Hierarchic/Preview display suggests

that the discrete control model which guided the design of the display

was a model which was similar to, or at least compatible with, the users'

internal models of the system. The strategy of keying information to con-

trol functions and of dynamically reinterpretting lower level information

into percept-like chunks appears to be an adequate compensation for the

additional operator effort required by the integrated display. The

combination of these attributes makes the "artificial", computer assisted

display competitive with the "natural", operator controlled search,

select, and integrate information acquisition activity required by con-

ventional display panels.

The low error rate for all the displays was interesting. At least

for this system, it appeared to make little difference which display was
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used. Subjects consistently seemed to understand the system constraints,

and to seek the information needed to ensure that the contemplated control

action was acceptable.

The displays did effect the subjects' ability to process engines

through the system. Session score depended on few errors, and either a

great many engines of some type, or a few less engines with more of the

expedited types. The results of the multiple comparison tests indicate

that significantly more expedited engines were processed by users of the

dedicated display than by those using the Grouped Primitive display; the

number of expedited engines by users of the Hierarchic/Preview display

fell between the two other displays. It~is possible that the dedicated

display gave the operator a slight edge because the full contents of the

Buffer Storage area were continuously displayed, enabling users to

reflect on expedite strategies during slow periods. Several of the

comments from subjects using the Hierarchic/Preview display indicated

that it would have been helpful to have had the full description of the

order and contents of Buffer Storage more easily accessible.

As the dedicated and Hierarchic/Preview displays showed no difference

in scores, it should be no surprise that they showed no difference in

either total number of engines processed or the number of expedited

engines processed; both displays resulted in significantly more engines

processed than users of the Grouped Primitive display.

The resource utilization measures, BUSY and HELD, are strongly

related to the overall operator performance; the comparison of displays

for these measures follows the same pattern as that for session score.

One note is needed about the outliers. In most cases, extre

values were associated with users of the Grouped Primitive display. This
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display tended to tax a marginally skilled operator. In the debriefing

sessions, subjects using this display, particularly those with lower

average scores, mentioned the disorienting quality due to the variable

contents of the information console. Grouped Primitive display stated

that they found the display difficult to get used to. One subject who

used it became so frustrated that he relied on the display all query

procedures for well over fifty percent of his information. Integrated

displays burden the users in that they require spatial re-encoding of

the displayed information when the screen contents change. The nature of

the dedicated display meant that this re-encoding was not required so

that information was always in the same place. For example, experienced

subjects were likely to remember where on the screen the state of Station 1

would be displayed and to simply read the state of the component in order

to check its status. For the integrated display users, however, the

subjects probably had to read the system name as well as its state, e.g.

* STATION 1: CLEAR. For several of the control functions, the Grouped

Primitive -Display presented the status of as many as eight or nine system
4

camponents. This volume of information was high for quick and effortless

re-encoding, perception, and integrating. Although the Hierarchic/Preview

* display also required spatial re-encoding, the limited amount of displayed

information and its synthesized form seem to result in fewer assimilation

and integration problems, as evidenced by the performance of users of this

display type. In general, the only negative comments about the display

format or contents volunteered by subjects at the debriefing session were

from users of the Grouped Primitive display.

The discrete event log for each session was examined to obtain a

tally of the numbers and types of information queries made by users of the
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two integrated displays. The users of the Grouped Primitive display

tended to circumvent the design principles on which the display was

based. They usually relied on three or four query buttons for the

majority of their information. Typically, the buttons associated with

Buffer Control, Entry Control, and Test Exit Control were heavily used,

the button for Repair Exit Control Information was occassionally used,

and the other functionally related buttons were largely ignored. One

reason given for this was the overlap between the various sets of

information. Harking back to the disorienting quality of the display,

several subjects said it was easier to get used to three or four

different displays rather than seven. Evidently the time required to

obtain information with the "display all" procedures or the amount of

information displayed on the screen by a "display all" request

discouraged Grouped Primitive users from using it frequently. Reliance

on the "display all" display would have eliminated some of the objections

about the difficulty in interpreting the different sets of displayed

information. With one exception, however, none of the users of the

Grouped Primitive display relied extensively on it.

Users of the Hierarchic/Preview display utilized the information

console in patterns more consistent with those expected, given the design.

These users rarely used the lower level, primitive information available

with the shift procedure. The most frequently used shift procedures were

with Buffer Control and Repair Entrance Control. These buttons provided

information about the complete contents, order, engine type, and test

status of the Buffer Storage and Temporary Storage queues, respectively.

The "display all" button was used a bit more by subjects with the

Hierarchic/Preview display. When questioned, the majority indicated that
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they used it to obtain information about the storage area queues. One

person used the display all button merely to fill the time between

control actions; when he required information to evaluate the feasibility

of a control action, he always queried the button corresponding to the

appropriate control function.

Several users of the dedicated display commented on potentially

fatiguing qualities of the static display. They felt that though it was

not a burden for a thirty minute control session, they would not want

to control the system for long periods of time; the boredom was wearing.

A number asked if they could bring in magazines, friends, etc. to help

2 - pass the time. None of the subjects using the integrated displays indicated

any boredom. :t is possible that the additional control actions required

by the integrated display helped to relieve the monotony of the control

task.

At the debriefing which concluded the last experimental session,

subjects were asked to describe their control strategies. To focus the

discussion, subjects were asked to describe the procedures employed to

fill Station 2, for feeding and removing engines from Station 6, and for

handling failed engines. Every subject stated that it was his or her

goal to keep Station 6 filled as much of the time as possible. Most of

the very successful operators, held an engine at Station 6 until and engine

needing test was waiting at Station 4. Those that released an engine as

soon as it was tested, regardless of the state of Station 4, did not

perform well.

Subjects varied widely in their policies for repairing failed engines.

Some repaired all engines, others repaired only engines which were of the

type being expedited, and others repaired no engines until Temporary
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Storage and Station 5 were both full. None of these strategies, taken

in isolation, seemed to result in consistently superior performances.

Subjects also varied widely on their policies for filling Station 2.

Some, immediately after releasing an engine from Station 2, routed another

engine to the station. Others waited for periods, up to some upper limit,

in the hope that they could route an expedited engine from Station I to

Station 2. One or two subjects allowed Station 2 to remain idle indefinitely,

until an expedited engine could be routed to the station. A number of

subjects conditioned their policy on the contents of the Repair Station;

if Station 7 had an expedited engine waiting, they would be more likely

to leave Station 2 clear until an expedited engine was available. Generally,

the more successful operators had strategies which kept Station 2 filled,

or would only wait a short period of time before routing a nonexpedited

engine to the station. Strategies in which controllers consistently

sacrificed throughput in favor of a higher number of expedited engines

tended to result in lower scores.

* With the exception of the policy for holding engines, the interviews

with the subjects did not identify highly effective strategies or strategies

which were display related. The strategies sounded very similar, but the

variability in performance belies this conclusion. It would be interesting

to examine the discrete event log for the control sessions and infer

strategies; it seems likely that highly effective operators had fairly

unique strategies.

This study was undertaken in order to demonstrate the use of the

discrete control modelling methods in designing integrated information

displays and to test the effect of the resultant displays on operator

performance. The experiment showed that for at least one of the integrated
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displays, operator performance was no worse with an integrated display

than with a dedicated display. This is an important result for space

limited control stations where growing information needs are necessitating

computer based, integrated information systems.

The significant differences in performance between users of the

Grouped Primitive display and the users of both the dedicated and

Hierarchic/Preview display suggest that a poorly designed integrated

display can seriously degrade performance. The differences between the

integrated displays suggest attributes of integrated displays which

enhance user performance. The Grouped Primitive display attempted to

campensate for the additional effor7t required by user controlled infor-

mation by using system alerts to notify the user of events potentially

requiring operator attention and by diagnostic messages to assit in

unlocking the system. These enhancements were evidently not a sufficient

offset. On the other hand, the addition of preview information and the

reformulated, higher level information of the Hierarchic/Preview display

did seem to compensate for the additional effort. Integrated displays,

* in order to make up for the additional effort required to use them, must

not only selectively display information, but must also preprocess the

information, presenting it in a form easily assimilated by the operator.

A comparison of the differences in performance between users of the

Grouped Primitive and Hierarchic/Preview displays add another important

insight. It is likely that the tendency in the computer based, integrated

display developed in the future will be for them to look more like the

Grouped Primitive display than the Hierarchic/Preview display; that is,

it is likely that a typical integrated display will provide low level

data, similar to that now presented in dedicated form but in a centralized,
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delimited way. This research suggests that the result would be a

serious degradation in operator performance. A good deal of care must

be taken in designing integrated displays. Computer based displays

afford a great deal of flexibility in the display of information; this

flexibility must be creatively exploited so that information is pre-

processed and presented in forms compatible with the user's needs,

rather than in forms directly corresponding to the individual hardware

components.

Another insight concerned the potentially positive contribution that

* integrated, operator controlled information displays can make to the

boredom inherent in some control tasks. Particularly in more supervisory

tasks, modern controllers may be required to be alert and watchful duringjI

long periods of inactivity. The operator actions required by an integrated

information display may add a valuable dimension to the conventional control

room where slowly changing displays can potentially mesmerize the operator.

This research has made two important contributions to the area ofI

* display design. Perhaps the most important concerns the relative contri-

* butions to observed performance variance of individual subjects and displays.

* 4 The percentage of performance variance attributable to subject variation

far outweighed the portion attributable to the differences in displays.

It seems that the most important factor in improving the human-machine

* interface is the selection of a "tgood"t operator. A well-designed display

enhances the performance of a highly skilled operator; a poorly designed

display further degrades the performance of a less skilled operator.

The second major contribution made by this research is the demonstra-

tion of the utility of the discrete control modelling methods in designing

displays. To date, design of integrated displays has been system specific
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* and fairly intuitive, suffering from a lack of well-defined, repeatable,

and tested procedures ifor creating computer based information systems.

No coherent set of standards or principles exists to guide the design of

* integrated displays. Yet, it is widely agreed, and this experiment

* confirmed, that a poorly designed integrated display results in significantly

worse performance than a dedicated display. This research demonstrated

the efficacy of one approach to designing displays which organized

information by the needs of the users rather than on hardware-related

logic. The hierarchic structure of the modelling approach suggested was

to exploit the capabilities of computer based information systems by

allowing variable format, and dynamic lev~ls of aggregation of lower

level data. This modelling method constitutes one, coherent, well-defined

theoretical approach to the design of integrated information systems.

Creative and rigorous design principles for information displays will

improve the human-machine system and help to reinstate the human operator

as a vital-and strong link. Much more research is required, however, to

fully exploit the potential which computer based displays afford.
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